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1. Physical fundamentals

The alkali metals are comprised of the group 1 elements in the periodic table, with the exception of
hydrogen (and possibly the still to be synthesised ununennium), which barely exhibits alkali properties.
All these elements have only one weakly bounded outer electron, which allows us to approximate their
energy levels by calculating them for hydrogen.

1.1. Fine structure
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Fig. 1: Energy splittings of hydrogen without regard to the hyperfine splitting, adapted from [2]

Looking at the various energy levels and energy splittings of hydrogen without the hyperfine splitting,
which we will discuss later, we get an overview as seen in Fig. |1} It should be noted that the “normal”
Zeeman effect is just a relatively rare special case of the anomalous Zeeman effect, however, it can be
explained semi-classically with the Bohr model. The term “anomalous” is therefore just historical, as
it could not be understood properly at the time of discovery, and is in fact contradictory, as it is the
normal case [3, p. 214]. In the following, we will simply ignore this separation and talk about the
anomalous Zeeman effect as the Zeeman effect.

In the classical gross structure of energy spectra as described by Bohr, the energy levels of a hydrogenic
atom depend only on the pricipal quantum number n with

me* Z2

En = —86(2)h2§ (1)

This model, however, is not accurate. A better model can be obtained by solving the Dirac equation
with regard of relativistic and spin effects, which split the spectral energy lines.

This fine structure can be split into three separate corrective terms, which leads to the following
Hamiltonian [3, p. 197f]

H = HO + Hkin + Hso + HDarWinian (2)
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The first corrective term is based on the special relativity, which changes the kinetic term in the
2
Hamiltonian from T = £- to T = \/p?c? + m?c* — mc?. Expanding this in a Taylor series yields the
first order correction as:

4

p
Hyiy = ———— 3
k 8m3c2 (3)

The second corrective term arises from the spin-orbit coupling. Shifting the frame of reference from
the nucleus to the electron results in the nucleus orbiting the electron and thereby functioning as a
current loop, which generates a magnetic field coupling with the magnetic field of the electron due to
its intrinsic angular momentum. Therefore, the corrective term should contain the scalar product of L

and S. We get:
1 ([ Ze? Js L-S
Hso = 2 <47reo> (2m262) 3 )

The last, Darwinian correction term can be interpreted as a smearing of the interaction between
electron and nucleus due to rapid quantum oscillations of the electron. It is given by:

2 Ze?
H arwinian — 55 5 | 7 63 5
Da a 2m2C2 <4ﬂ_€0> (T) ( )

1.1.1. Zeeman effect

Looking deeper into the spin-orbit coupling [3, p. 215ff.], one finds
a total magnetic moment as the (vector) sum of the orbital and spin
magnetic moments:

Ky = g+ (6)
In contrast to the orbital and spin magnetic moments, where the
vectors p, and s or respectively p; and [ is antiparallel, one finds no
similar coincidence for the total magnetic moment due to different
g factors for spin and orbital magnetism. The vector p; is in fact
precessing (due to the strong coupling quite rapidly) around j, which
is fixed. We can therefore only observe the time average, which is it’s
projection on j, written as (Nj)j~ Calculation yields, with multiple
usage of the law of cosines:

()il =95V + s (7)
with

JU 1) +s(s+1) 10+ 1) «
2j(j +1)

Fig. 2: S and L add to J, like- For multiple electron systems, on simply replaces s, [ and j by S,

L and J. The vector moment and its z component are:

g;i =1+

wise the moments add to
;. Due to different g fac- ginBJ

tors, p; precesses around (Nj)j = T (9)
J. From [3] p. 214]

(Bj)j.= = —mjgjpp (10)
Therefore with an applied magnetic field B we get an energy splitting of

AEp = (Amj)gjnsB (11)
For optical transitions, the selection rules apply, with Am; = 0 for 7 transitions and Am; = %1 for
o* transitions.
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1.1.2. Paschen-Back effect

In strong magnetic fields, where the energy level splitting due to the magnetic field is not small compared
to the spin-orbit coupling, the Zeeman effect will not happen any more. With such a strong magnetic
field, the fine structure coupling is dissolved and I and s are precessing independently around the
magnetic field B. Therefore j becomes meaningless. The z components of the orbital and spin moments
are now quantised individually, leading to a splitting of [3 p. 217]:

AE = (Am; + 2Amg)upB (12)

For optical transitions, the aforementioned selection rules now apply to Am,;. Furthermore we have
Amg = 0 as dipole radiation cannot cause a spin flip.

1.2. Hyperfine structure

The hyperfine structure works quite analogous to the spin-orbit coupling in the fine structure. Atomic
nuclei possess an angular momentum I characterized the quantum number I [3], p. 362ff.]:

11| = /I + D)h (13)

The observable z component is given as:

(I). =msh with my=—I,—IT+1,..,1—1,1 (14)

The connected magnetic moment is:

(15)

gripuN eh
= I =
Hr =7 A

I with the nuclear magneton uy =
2mp

The z component results as:

(B1)z = grunmy (16)

Looking at the coupling between the angular momenta of the electrons J and the nucleus I, we can
proceed analogous to the fine structure and get a total angular momentum F = J + I.
1.2.1. Zeeman effect

Applying a weak magnetic field B, this external field adds to the internal field By. If it is small enough

to let the coupling of I and J remain intact, we get an energy splitting of [3, p. 371]:

F(F+1)+JJ+1)—-I(I+1)
2F(F+1)

AFE = gF,uBBAmF with gr = 3gJ (17)

As usual, for optical transitions, selection rules apply: Ampg = 0 for 7 transitions and Amp = +1
for oF transitions.

1.2.2. Paschen-Back effect

If however the external magnetic field B is strong enough to break the coupling of I and J, F becomes
meaningless. The energy splitting now consists of three terms: The shell moment as explained in the
Zeeman effect of the fine structure, a hyperfine splitting of these levels and the Zeeman energy of the
nucleus [3 p. 372f.]:

grunBy
JU+1)

For optical transitions the selection rules are Am; =0 and Amjy =0, +1.

AE = gyjupAm B + AmiAmy — grunAmiB (18)
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1.3. Optical pumping
In Fig. [3| we can see the fine, hyperfine and hy-

splting soting spitbog perfine Zeeman splitting of 8’Rb. Note that the
Py energy is not to scale, in fact, the fine splitting is
2 "'; about five orders of magnitude larger than the hy-
R2 ,é‘ perfine splitting, which in turn is about three or-
/ ,:::4:\_? ders of magnitude larger than the hyperfine Zee-

"?,2 ~2 man effect with an external field of some mT.
|4 Assuming we are now inducing optical trans-
£ :'::: 0 missions with ot polarized light, which means
1 that mp will be increased by one. This intermedi-
W“' ate state then decays with Amp = 0,+1 into an

D, D, 5Emsdon.lmy=-0.:1 . .
e TB0DAN 1 3 2,-7948rem me excited state. Therefore, we are effectively emp-
38510"Hz [ 37T W'z 2 tying the initial state, as the excited state will in
1 many cases not be the initial state, and thereby
/j’:, o causing a population inversion.

2 T IH 1 In reality, due to collisions between atoms and
s / ‘Jm‘ §:\ R between atoms and the walls, the atoms will relax
Y S from the excited state back into a thermodynamic
\F‘1 \_2 balance. In effect, we will reach a state of equilib-

rium between the relaxation of excited states into
=Ho o thermodynamic balance and the creation of new
excited states by optical pumping.

This equilibrium can be tuned in two ways:
First, introduction of noble gases can be used to
minimize collisions. Second, the intensity of the
light used to induce the optical pumping can be increased. Both possibilities lead to a higher proportion
of excited states.

The time dependency of the number of atoms in an excited state can be calculated on the basis of
a two level system. Assuming Ny to be the number of atoms in the excited state and N_ to be the
number of atoms in the ground state, with N = N, + N_ the total number of atoms, we get the
following differential equation:

Fig. 3: Energy level schema for 8"Rb with optical
transitions, from [6]

dN, N-N, Ny

19
dt Tpumping Trelaxing ( )
1 N
. —1 -1
Wlth T .= (Tpumping + Trelaxing) and NO = W we get:

Trelaxing

AN, Ny— N,
= 20
dt T (20)

With the initial condition N (0) = 0 this is solved by:

No() = No (1 _exp (j)) (21)

In this experiment, we will use a rubidium spectral lamp to induce optical pumping of rubidium. One

might think that this should not be possible, as the lamp emits sharp spectral lines, which cannot induce

all permissible transitions between the various Zeeman levels, as they are by definition of varying energy.
However, several mechanisms broaden the spectral lines, therefore, they are not ideally sharp.

1.4. Spectral line width
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The first mechanism is Heisenberg’s uncertainty principle. This leads to a homogeneous broadening
dependent on the lifetime 7 of the energy levels. As is well known, the energy uncertainty of one such
energy level is given as:

h
AE = — (22)

T

The broadening of the emitted frequency is therefore given as

1 1 1

s= (L) -
2r \ 11 Ty

with the lifetimes 71 and 75 of the lower and upper energy levels.

Further homogeneous broadening comes from collisions with other atoms. This leads to a broadening
of

3
Af = d? 24
I =\ Tkpt? (24)
with the atomic mass m, the atomic diameter d and the pressure p.
An other source of broadening is the Doppler effect. This broadening is inhomogeneous and depends
on the velocity of the gas atoms. It is given non-relativistically as:

Af=f- (25)

2. Experimental setup

© & ©

o NN 25l o 4
)

UL 1O

O

Fig. 4: Schematic of our experimental setup, from [I]

Our experimental setup as seen in Fig. [4| consist of a high-frequency rubidium gas discharge lamp (1),
whose light is collected by a lens (2). It then passes an interference filter (3), which transmits the D,
line and suppresses the Dy line. It is then first linearly polarized (4) and then passes a quarter-wave
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plate (5), thereby becoming circularly polarized. Afterwards, the light enters the rubidium absorption
chamber (10), which can be heated (11) and which is located between two pairs of Helmholtz coils (6)
and the coils (12) of a high frequency transmitter (7). In the end, the light gets collected by a lens (8)
and detected by a photo transistor (9).

The light entering the absorption chamber fulfils two purposes. On the one hand, it is initiating a
pumping process. On the other hand, a optically pumped absorption chamber transmits more light.
Measuring the transmitted light via a photo transistor, we therefore get an information about the
population of energy states in the chamber. The current — and via a resistor the voltage — measured at
the photo transistor is proportional to the light intensity.

3. Measurements and results

3.1. Pumping time

We measured the pumping time during the initial heating up phase of the rubidium lamp. Therefore,
we get multiple intensities quite easily.
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Fig. 5: Pumping processes at increasing lamp temperatures and intensities. Intensities increase from
(a) to (d)
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Fig. 6: First fully visible pumping processes from Fig. With exponential fit

We get the following pumping times with I; < Iy < I3 < I

Intensity =~ Pumping time 7 [ms]

I 3.798 £0.021
I 4.353 £0.020
I3 3.555 +£0.013
1 4.056 £ 0.010

We cannot detect any correlation between the light’s intensity and 7. Therefore, 7 cannot be the
pumping time from equation 2I] Interestingly, the values are different from each other even considering

multiples of their respective error.

3.2. Earth’s magnetic field

In this part, we determine the horizontal intensity of earth’s magnetic field by applying a rectangularly
varying field with an added constant field. If the resulting magnetic field negates earth’s magnetic field,
every second pumping process is omitted. By changing the polarity of the constant magnetic field, we
become independent of the varying field:

Bcarth + BAC - BQ = 0 (26)
Bearth - BAC + Bl = 0 (27)
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Adding these two equations, we get:

By — By

Bearth = 2 (28)
The strength of the constant magnetic field can be derived from the applied current by:
4\ % nI
n
B= S]] = 29
Kot (3> R (29)

The used coils have n = 80 and R = 90 mm. As copper has nearly no magnetic susceptibility[4], we
can assume p, = 1. All put together, we get:

4 3 n 4 H n 5 5
Bearth = Holr g ﬁ ‘ (12 - Il) ABeamth = HoMr g ﬁ (AIQ) + (All) (30)

We measured at three different intensities of the AC field:

Il [A] Il [A] Bearth [llT]
1.24 +0.02 1.30 +0.02 51 +24
1.73 £0.02 1.78 £0.02 43+ 24
2.25+0.02 2.26 + 0.02 9424

Averaging yields a result of Bearth = (34 & 24) nT. Obviously, the error is very large. We assumed an
error of 0.02 A for the currents because the displays were varying by 0.01 A and we assumed the same
value as a measurement error of the indicator.

However, the determined value fits well with the calculated value of Beartn = 19.0 uT at a latitude of
52°2', a longitude of 8°29’ and an elevation of 132m on the date of measurement, as calculated with
11th IGRF [3].

3.3. Zeeman splitting

To determine the Zeeman splitting, we apply a triangular current to the Helmholtz coils and additionally
apply a high frequency field. If the energy of the high frequency field equals the Zeeman energy splitting,
the pumping process is disturbed. By looking up the voltage/current applied at the Helmholtz coils in
that moment and thereby determining the current magnetic field, we get two equations for the energy
splitting:

AE = hf (31)

AE = ILLBgFAmFB (32)

10
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As we are measuring the voltage applied at the Helmholtz coils with an oscilloscope, we first need to
determine their resistance to be able to calculate the current. We do this by applying various direct
currents to the coils:

10

Data ——
Linear regression

Voltage U [V]
()]
T
|

Current | [A]

Fig. 7: Voltages and currents applied to the Helmholtz coils

With linear regression we get a resistance of R = (3.749 £ 0.031) Q.

Looking at Fig. [§] we see two distinct minima in the transmitting intensity. They belong to the two
natural isotopes of rubidium, 8°Rb and 8"Rb. Putting equations and together with the determined
resistance and the voltage of the minima, which we can easily read in the oscilloscope data file, we get:

hfR dUN\?  [dR\? [df\?
e CORCIRIC N
pBpopr3 > U

11
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Fig. 8: Zeeman splitting at different frequencies of the high frequency emitter

12
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f [He] U [V] gr Isotope
340112+ 1 0.31+0.16 0.3394+0.170 8Rb
340112+ 1 0.63 £0.16 0.169 +0.042 ¥Rb
527450 =+ 50 0.63+0.16 0.263+0.066 S"Rb
527 450 + 50 1.2540.16 0.131 +£0.016 %°Rb
860845 + 5 1.72+0.16 0.156 £0.014 3"Rb
860845 £ 5 3.134+0.16 0.086 +0.004 %°Rb

1028990 + 1 2.3440.16 0.1374+0.009 8Rb
1028990 + 1 4.06 £ 0.16 0.0794+0.003 3Rb
1188351 +1 2.814+0.16 0.132+0.007 8"Rb
1188351 +1 5.00 £ 0.16 0.074 +0.002 ¥Rb

One can notice, that the g factor seems to be dependent of the frequency: The higher the frequency,
the lower the g factor. Interestingly, an other group had the inverse phenomenon: The higher the
frequency, the higher the g factor. As the g factor should be constant, there seems to be a systematic
error somewhere in the setup.

Additionally one can notice, looking at the applied voltage at the Helmholtz coils in Fig. 8] that this
voltage has quite a lot of noise. This might indicate a larger error in the voltage than assumed.

Ignoring the frequency dependency and averaging over the g factors yields:

gr(5"Rb) = 0.21 +0.09 gr(3°Rb) = 0.11 4+ 0.04 (34)
The theoretical value can be calculated from equation |17| with S = % and L = 0 leading to J = % as
well as gy =~ 2, [ = % for 8Rb and I = g for 3Rb:
87 1 85 1
gr(°'Rb) = ) gr(*"Rb) = 3 (35)

Obviously, our results do not match the theoretical values even with regard to multiples of their
errors.
Assuming no knowledge of the spin of rubidium, one would calculate it by transposing equation

11 AIN®  [Agp\?
roLile (1) () -
2 2grp I gr
Applying our results for g leads to:

I(3"Rb) = 4.26 +1.83 I(®Rb) = 8.59 + 3.12 (37)

As expected, the values are way off from the true values.

4. Conclusions

In this experiment, we were able to optically pump rubidium. We determined a relaxation time, which
however is not the relaxation time from optical pumping, as it is intensity independent.

We were further able to successfully measure earth’s magnetic field, albeit the uncertainty of our
determined values of roughly 70 % is not satisfying.

We were also able to observe the hyperfine Zeeman splitting by applying a high frequency field. How-
ever, the determined g factors do not match with theory. Furthermore, there seems to be a systematic
problem, as our g factors are frequency-dependent, which they should not be. As the g factors do not
match, the calculated nuclear spins do not match with theory as well.

13
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