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1. Physical fundamentals
The alkali metals are comprised of the group 1 elements in the periodic table, with the exception of
hydrogen (and possibly the still to be synthesised ununennium), which barely exhibits alkali properties.
All these elements have only one weakly bounded outer electron, which allows us to approximate their
energy levels by calculating them for hydrogen.

1.1. Fine structure
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Fig. 1: Energy splittings of hydrogen without regard to the hyperfine splitting, adapted from [2]

Looking at the various energy levels and energy splittings of hydrogen without the hyperfine splitting,
which we will discuss later, we get an overview as seen in Fig. 1. It should be noted that the “normal”
Zeeman effect is just a relatively rare special case of the anomalous Zeeman effect, however, it can be
explained semi-classically with the Bohr model. The term “anomalous” is therefore just historical, as
it could not be understood properly at the time of discovery, and is in fact contradictory, as it is the
normal case [3, p. 214]. In the following, we will simply ignore this separation and talk about the
anomalous Zeeman effect as the Zeeman effect.
In the classical gross structure of energy spectra as described by Bohr, the energy levels of a hydrogenic

atom depend only on the pricipal quantum number n with

En = − me4

8ε20h2
Z2

n2 (1)

This model, however, is not accurate. A better model can be obtained by solving the Dirac equation
with regard of relativistic and spin effects, which split the spectral energy lines.
This fine structure can be split into three separate corrective terms, which leads to the following

Hamiltonian [3, p. 197f.]

H = H0 +Hkin +Hso +HDarwinian (2)
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The first corrective term is based on the special relativity, which changes the kinetic term in the
Hamiltonian from T = p2

2m to T =
√
p2c2 +m2c4 −mc2. Expanding this in a Taylor series yields the

first order correction as:

Hkin = − p4

8m3c2 (3)

The second corrective term arises from the spin-orbit coupling. Shifting the frame of reference from
the nucleus to the electron results in the nucleus orbiting the electron and thereby functioning as a
current loop, which generates a magnetic field coupling with the magnetic field of the electron due to
its intrinsic angular momentum. Therefore, the corrective term should contain the scalar product of L
and S. We get:

Hso = 1
2

(
Ze2

4πε0

)( gs
2m2c2

) L · S
r3 (4)

The last, Darwinian correction term can be interpreted as a smearing of the interaction between
electron and nucleus due to rapid quantum oscillations of the electron. It is given by:

HDarwinian = ~2π

2m2c2

(
Ze2

4πε0

)
δ3(r) (5)

1.1.1. Zeeman effect214 13. Atoms in a Magnetic Field: Experiments and Their Semiclassical Description 

Fig. 13.11. Left: The relation between the angular momentum / , the magnetic moment Hj and their orienta­
tion with respect to the magnetic field BQ for strong spin-orbit coupling, cf. also Fig. 13.13. The angular 
momentum vectors S and L combine to form / . Likewise, the associated magnetic moments //^ and fi^ com­
bine to ft J. Because spin and orbital magnetism have different gyromagnetic ratios, the directions of the 
vectors / and Hj do not coincide. What can be observed is the projection of fij on / , as the time average 
of many precession cycles. That is, one observes the component (Wy)/, which is therefore represented as fij 
or fig, see the right-hand diagram. In the one-electron system, lower case letters can be used instead of 5, 
L and /, as is done in the text. Right: The projection of Hjon the vector / i s (jij)j, see Fig. 13.14. The pro­
jection of (jij)j on ^0 is calculated using the Lande factor. Because the angular momenta S and L are 
strongly coupled, the vector fij precesses rapidly around the negative extension of the vector / . Only the 
time average (jij)j in the / direction can be observed. This precesses slowly, because of weak coupHng, 
around the axis of BQ. The magnetic energy is the product of the field strength BQ and the component of 
{^j)j in the direction of BQ, i.e. (jij)j^z ^^ (MJ)Z'^0' Lower case letters can be used instead of S, L, / in the 
one electron system. 

Figure 13.11 illustrates the anomalous Zeeman effect (Sect. 13.3.4). The ordinary Zeeman effect 
(Sect. 13.3.3) is more simple. From 5 = 0 follows fij = ju^, and the directions of the vectors - /ij and J = L 
coincide; see Fig. 13.9 

13.3.4 The Anomalous Zeeman Effect 

One speaks of the anomalous Zeeman effect when the angular momentum and mag­
netic moment of the two terms between which an optical transition occurs cannot be 
described by just one of the two quantum numbers 5 or / (or S or L), but are determined 
by both. Refer also to Fig. 13.11. This is the general case, in which atomic magnetism 
is due to the superposition of spin and orbital magnetism. The term "anomalous" Zee-
man effect is historical, and is actually contradictory, because this is the normal case. 

In cases of the anomalous Zeeman effect, the two terms involved in the optical tran­
sition have different g factors, because the relative contributions of spin and orbital 
magnetism to the two states are different. The g factors are determined by the total 
angular momentum y and are therefore called gj factors. The splitting of the terms in 
the ground and excited states is therefore different, in contrast to the situation in the 
normal Zeeman effect. This produces a larger number of spectral lines. The calculation 
of the gj factors follows in Sect. 13.3.5. 

We will use the Na D lines (Fig. 13.12) as an example for a discussion of the 
anomalous Zeeman effect. 

For the three terms involved in the transitions which produce the Na D line, namely 
the ^Si/2, the ^Pu2 and the ^P3/2, the magnetic moments in the direction of the field are 

(Mj)j,z== -^J9JMB (13.14) 

Fig. 2: S and L add to J , like-
wise the moments add to
µj . Due to different g fac-
tors, µj precesses around
J . From [3, p. 214]

Looking deeper into the spin-orbit coupling [3, p. 215ff.], one finds
a total magnetic moment as the (vector) sum of the orbital and spin
magnetic moments:

µj = µs + µl (6)
In contrast to the orbital and spin magnetic moments, where the

vectors µs and s or respectively µl and l is antiparallel, one finds no
similar coincidence for the total magnetic moment due to different
g factors for spin and orbital magnetism. The vector µj is in fact
precessing (due to the strong coupling quite rapidly) around j, which
is fixed. We can therefore only observe the time average, which is it’s
projection on j, written as (µj)j . Calculation yields, with multiple
usage of the law of cosines:

|(µj)j | = gj
√
j(j + 1)µB (7)

with

gj = 1 + j(j + 1) + s(s+ 1)− l(l + 1)
2j(j + 1) (8)

For multiple electron systems, on simply replaces s, l and j by S,
L and J . The vector moment and its z component are:

(µj)j = −gjµBj
~

(9)

(µj)j,z = −mjgjµB (10)
Therefore with an applied magnetic field B we get an energy splitting of

∆EB = (∆mj)gjµBB (11)
For optical transitions, the selection rules apply, with ∆mj = 0 for π transitions and ∆mj = ±1 for

σ± transitions.
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1.1.2. Paschen-Back effect

In strong magnetic fields, where the energy level splitting due to the magnetic field is not small compared
to the spin-orbit coupling, the Zeeman effect will not happen any more. With such a strong magnetic
field, the fine structure coupling is dissolved and l and s are precessing independently around the
magnetic field B. Therefore j becomes meaningless. The z components of the orbital and spin moments
are now quantised individually, leading to a splitting of [3, p. 217]:

∆E = (∆ml + 2∆ms)µBB (12)

For optical transitions, the aforementioned selection rules now apply to ∆ml. Furthermore we have
∆ms = 0 as dipole radiation cannot cause a spin flip.

1.2. Hyperfine structure
The hyperfine structure works quite analogous to the spin-orbit coupling in the fine structure. Atomic
nuclei possess an angular momentum I characterized the quantum number I [3, p. 362ff.]:

|I| =
√
I(I + 1)h (13)

The observable z component is given as:

(I)z = mIh with mI = −I,−I + 1, ..., I − 1, I (14)

The connected magnetic moment is:

µI = γI = gIµN
~

I with the nuclear magneton µN = e~
2mP

(15)

The z component results as:

(µI)z = gIµNmI (16)

Looking at the coupling between the angular momenta of the electrons J and the nucleus I, we can
proceed analogous to the fine structure and get a total angular momentum F = J + I.

1.2.1. Zeeman effect

Applying a weak magnetic field B, this external field adds to the internal field BJ . If it is small enough
to let the coupling of I and J remain intact, we get an energy splitting of [3, p. 371]:

∆E = gFµBB∆mF with gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1) (17)

As usual, for optical transitions, selection rules apply: ∆mF = 0 for π transitions and ∆mF = ±1
for σ± transitions.

1.2.2. Paschen-Back effect

If however the external magnetic field B is strong enough to break the coupling of I and J , F becomes
meaningless. The energy splitting now consists of three terms: The shell moment as explained in the
Zeeman effect of the fine structure, a hyperfine splitting of these levels and the Zeeman energy of the
nucleus [3, p. 372f.]:

∆E = gJµB∆mJB + gIµNBJ√
J(J + 1)

∆mI∆mJ − gIµN∆mIB (18)

For optical transitions the selection rules are ∆mI = 0 and ∆mJ = 0,±1.
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1.3. Optical pumping

                    

 

  
                                     Fig. 1    Energy Level Scheme for Rb87

 
The hyperfine interaction, caused by the coupling of the orbital angular momentum J with the 
nuclear spin I, leads to the splitting of the ground state and the excited states. The additional 
coupling provides hyperfine levels with a total angular momentum F = I ± J.  For 87Rb with a 
nuclear spin I = 3/2, the ground state 2  and the first excited state  split up into two 
hyperfine levels with the quantum numbers F = 1 and F = 2. Compared with the transition 
frequency of Hz between  and , the resulting splitting of the ground state and 
the excited states is much smaller. For the ground state, this hyperfine splitting of Hz is 
approx. 5 powers of 10 smaller than the fine structure splitting. 

1/2S 2
1/2P

144 10× 2
1/2P 2

1/2S
96.8 10×

 
In the magnetic field, an additional Zeeman splitting (Fig. 1) into 2F +1 sub-levels respectively is 
obtained. For magnetic fields of approx. 1 mT, the transition frequency between neighbouring 
Zeeman levels of a hyperfine state is Hz, i.e. another 3 powers of 10 smaller than the 
hyperfine splitting. The energy or frequency relationships between the individual states are of 
particular significance in understanding optical pumping.  

68 10×

 
1.2 Optical pumping 
 
The process can be explained in more detail using the energy level scheme of   87Rb (Fig.1) as 
A reference. The transitions from 2

1/2S  to  and  are electrical dipole transitions. They 
are only possible if the selection rules 

2
1/2P 2

3/2P

Fm 0∆ =  or Fm 1∆ = ±  have been fulfilled. 
 
The transitions between the Zeeman levels are detected using a method discovered by A. Kastler 
in 1950 which will be described in the following [1]. The D1 line emitted by the rubidium lamp 
displays such a high degree of Doppler broadening that it can be used to induce all permissible 

 3

Fig. 3: Energy level schema for 87Rb with optical
transitions, from [6]

In Fig. 3 we can see the fine, hyperfine and hy-
perfine Zeeman splitting of 87Rb. Note that the
energy is not to scale, in fact, the fine splitting is
about five orders of magnitude larger than the hy-
perfine splitting, which in turn is about three or-
ders of magnitude larger than the hyperfine Zee-
man effect with an external field of some mT.
Assuming we are now inducing optical trans-

missions with σ+ polarized light, which means
thatmF will be increased by one. This intermedi-
ate state then decays with ∆mF = 0,±1 into an
excited state. Therefore, we are effectively emp-
tying the initial state, as the excited state will in
many cases not be the initial state, and thereby
causing a population inversion.
In reality, due to collisions between atoms and

between atoms and the walls, the atoms will relax
from the excited state back into a thermodynamic
balance. In effect, we will reach a state of equilib-
rium between the relaxation of excited states into
thermodynamic balance and the creation of new
excited states by optical pumping.
This equilibrium can be tuned in two ways:

First, introduction of noble gases can be used to
minimize collisions. Second, the intensity of the

light used to induce the optical pumping can be increased. Both possibilities lead to a higher proportion
of excited states.
The time dependency of the number of atoms in an excited state can be calculated on the basis of

a two level system. Assuming N+ to be the number of atoms in the excited state and N− to be the
number of atoms in the ground state, with N = N+ + N− the total number of atoms, we get the
following differential equation:

dN+

dt
= N −N+

τpumping
− N+

τrelaxing
(19)

With τ :=
(
τ−1

pumping + τ−1
relaxing

)−1
and N0 := N

1 + τpumping
τrelaxing

we get:

dN+

dt
= N0 −N+

τ
(20)

With the initial condition N+(0) = 0 this is solved by:

N+(t) = N0

(
1− exp

(
−t
τ

))
(21)

1.4. Spectral line width
In this experiment, we will use a rubidium spectral lamp to induce optical pumping of rubidium. One
might think that this should not be possible, as the lamp emits sharp spectral lines, which cannot induce
all permissible transitions between the various Zeeman levels, as they are by definition of varying energy.
However, several mechanisms broaden the spectral lines, therefore, they are not ideally sharp.

6
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The first mechanism is Heisenberg’s uncertainty principle. This leads to a homogeneous broadening
dependent on the lifetime τ of the energy levels. As is well known, the energy uncertainty of one such
energy level is given as:

∆E = ~
τ

(22)

The broadening of the emitted frequency is therefore given as

∆f = 1
2π

(
1
τ1

+ 1
τ2

)
(23)

with the lifetimes τ1 and τ2 of the lower and upper energy levels.
Further homogeneous broadening comes from collisions with other atoms. This leads to a broadening

of

∆f =
√

3
4mkBT

pd2 (24)

with the atomic mass m, the atomic diameter d and the pressure p.
An other source of broadening is the Doppler effect. This broadening is inhomogeneous and depends

on the velocity of the gas atoms. It is given non-relativistically as:

∆f = f
v

c
(25)

2. Experimental setup

   4 

Der Pumpvorgang kann dadurch beschleunigt werden, dass man Krypton als Puffergas zu-
setzt. Bei Stößen mit dem Puffergas wird die Spinorientierung von Rubidium-Atomen im 
Grundzustand nicht geändert, während die Spinorientierung sich bei angeregten Atomen än-
dern kann, da der angeregte Zustand ein P-Zustand ist und folglich ein Teil seines magneti-
schen Momentes vom räumlichen Drehimpuls herrührt. Atome im Grundzustand behalten 
deshalb die Spinorientierung, die sie beim Einschalten des Magnetfeldes haben, auch im Fall 
von Stößen. 
 
 
2. Beschreibung der Apparatur 
 
Der experimentelle Aufbau ist in Abb. 3 skizziert. 
 

 
 
Abbildung 3: Schematische Darstellung der Apparatur zum „Optischen Pumpen“ 
 
1. Hochfrequenz-Gasentladungslampe 7. Hochfrequenz-Sender 
2. Sammellinse 8. Sammellinse 
3. Interferenzfilter 9.  Phototransistor 
4. Polarisator 10. Rubidium-Absorptionszelle 
5. 4λ -Platte 11.  Heizung für Absorptionszelle 
6. Helmholtz-Spulen 12. Spulen des Hochfrequenzsenders 
 
 
Hochfrequenz-Gasentladungslampe 
 
Es muss eine Spektrallampe verwendet werden, um Schwierigkeiten mit dem Interferenzfilter 
zu vermeiden. Die Lichtquelle in der Rubidium-Gasentladungslampe ist ein kleiner Glaskol-
ben, der sich zwischen den Spulen eines Hochfrequenzoszillators befindet. Wegen des Skinef-
fektes ist die Entladung auf eine dünne Zone am Rand begrenzt. Hierdurch wird im Gegensatz 
zu anderen Spektrallampen eine starke Verbreiterung der Linien vermieden. Der Oszillator ist 

Fig. 4: Schematic of our experimental setup, from [1]

Our experimental setup as seen in Fig. 4 consist of a high-frequency rubidium gas discharge lamp (1),
whose light is collected by a lens (2). It then passes an interference filter (3), which transmits the D1
line and suppresses the D2 line. It is then first linearly polarized (4) and then passes a quarter-wave

7
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plate (5), thereby becoming circularly polarized. Afterwards, the light enters the rubidium absorption
chamber (10), which can be heated (11) and which is located between two pairs of Helmholtz coils (6)
and the coils (12) of a high frequency transmitter (7). In the end, the light gets collected by a lens (8)
and detected by a photo transistor (9).
The light entering the absorption chamber fulfils two purposes. On the one hand, it is initiating a

pumping process. On the other hand, a optically pumped absorption chamber transmits more light.
Measuring the transmitted light via a photo transistor, we therefore get an information about the
population of energy states in the chamber. The current – and via a resistor the voltage – measured at
the photo transistor is proportional to the light intensity.

3. Measurements and results
3.1. Pumping time
We measured the pumping time during the initial heating up phase of the rubidium lamp. Therefore,
we get multiple intensities quite easily.
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Fig. 5: Pumping processes at increasing lamp temperatures and intensities. Intensities increase from
(a) to (d)
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Fig. 6: First fully visible pumping processes from Fig. 5 with exponential fit

We get the following pumping times with I1 < I2 < I3 < I4:
Intensity Pumping time τ [ms]
I1 3.798± 0.021
I2 4.353± 0.020
I3 3.555± 0.013
I4 4.056± 0.010

We cannot detect any correlation between the light’s intensity and τ . Therefore, τ cannot be the
pumping time from equation 21. Interestingly, the values are different from each other even considering
multiples of their respective error.

3.2. Earth’s magnetic field
In this part, we determine the horizontal intensity of earth’s magnetic field by applying a rectangularly
varying field with an added constant field. If the resulting magnetic field negates earth’s magnetic field,
every second pumping process is omitted. By changing the polarity of the constant magnetic field, we
become independent of the varying field:

Bearth +BAC −B2 = 0 (26)
Bearth −BAC +B1 = 0 (27)

9
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Adding these two equations, we get:

Bearth = B2 −B1

2 (28)

The strength of the constant magnetic field can be derived from the applied current by:

B = µ0µr

(
4
3

) 3
2 nI

R
(29)

The used coils have n = 80 and R = 90mm. As copper has nearly no magnetic susceptibility[4], we
can assume µr = 1. All put together, we get:

Bearth = µ0µr

(
4
3

) 3
2 n

2R · (I2 − I1) ∆Bearth = µ0µr

(
4
3

) 3
2 n

2R
√

(∆I2)2 + (∆I1)2 (30)

We measured at three different intensities of the AC field:

I1 [A] I1 [A] Bearth [µT]
1.24± 0.02 1.30± 0.02 51± 24
1.73± 0.02 1.78± 0.02 43± 24
2.25± 0.02 2.26± 0.02 9± 24

Averaging yields a result of Bearth = (34± 24) µT. Obviously, the error is very large. We assumed an
error of 0.02A for the currents because the displays were varying by 0.01A and we assumed the same
value as a measurement error of the indicator.
However, the determined value fits well with the calculated value of Bearth = 19.0 µT at a latitude of

52°2′, a longitude of 8°29′ and an elevation of 132m on the date of measurement, as calculated with
11th IGRF [5].

3.3. Zeeman splitting
To determine the Zeeman splitting, we apply a triangular current to the Helmholtz coils and additionally
apply a high frequency field. If the energy of the high frequency field equals the Zeeman energy splitting,
the pumping process is disturbed. By looking up the voltage/current applied at the Helmholtz coils in
that moment and thereby determining the current magnetic field, we get two equations for the energy
splitting:

∆E = hf (31)

∆E = µBgF∆mFB (32)

10
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As we are measuring the voltage applied at the Helmholtz coils with an oscilloscope, we first need to
determine their resistance to be able to calculate the current. We do this by applying various direct
currents to the coils:
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Fig. 7: Voltages and currents applied to the Helmholtz coils

With linear regression we get a resistance of R = (3.749± 0.031) W.
Looking at Fig. 8, we see two distinct minima in the transmitting intensity. They belong to the two

natural isotopes of rubidium, 85Rb and 87Rb. Putting equations 31 and 32 together with the determined
resistance and the voltage of the minima, which we can easily read in the oscilloscope data file, we get:

gF = hfRr

µBµ0µr
4
3

3
2nU

∆gF = gF ·

√(
dU

U

)2
+
(
dR

R

)2
+
(
df

f

)2
(33)
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(a) f = (340 112 ± 1) Hz
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(b) f = (527 450 ± 50) Hz
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(c) f = (860 845 ± 5) Hz
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(d) f = (1 028 990 ± 1) Hz
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(e) f = (1 188 351 ± 1) Hz

Fig. 8: Zeeman splitting at different frequencies of the high frequency emitter
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f [Hz] U [V] gF Isotope
340 112± 1 0.31± 0.16 0.339± 0.170 87Rb
340 112± 1 0.63± 0.16 0.169± 0.042 85Rb
527 450± 50 0.63± 0.16 0.263± 0.066 87Rb
527 450± 50 1.25± 0.16 0.131± 0.016 85Rb
860 845± 5 1.72± 0.16 0.156± 0.014 87Rb
860 845± 5 3.13± 0.16 0.086± 0.004 85Rb

1 028 990± 1 2.34± 0.16 0.137± 0.009 87Rb
1 028 990± 1 4.06± 0.16 0.079± 0.003 85Rb
1 188 351± 1 2.81± 0.16 0.132± 0.007 87Rb
1 188 351± 1 5.00± 0.16 0.074± 0.002 85Rb

One can notice, that the g factor seems to be dependent of the frequency: The higher the frequency,
the lower the g factor. Interestingly, an other group had the inverse phenomenon: The higher the
frequency, the higher the g factor. As the g factor should be constant, there seems to be a systematic
error somewhere in the setup.
Additionally one can notice, looking at the applied voltage at the Helmholtz coils in Fig. 8, that this

voltage has quite a lot of noise. This might indicate a larger error in the voltage than assumed.
Ignoring the frequency dependency and averaging over the g factors yields:

gF (87Rb) = 0.21± 0.09 gF (85Rb) = 0.11± 0.04 (34)

The theoretical value can be calculated from equation 17 with S = 1
2 and L = 0 leading to J = 1

2 as
well as gJ ≈ 2, I = 3

2 for 87Rb and I = 5
2 for 85Rb:

gF (87Rb) = 1
2 gF (85Rb) = 1

3 (35)

Obviously, our results do not match the theoretical values even with regard to multiples of their
errors.
Assuming no knowledge of the spin of rubidium, one would calculate it by transposing equation 17:

I = −1
2 + 1

2
gJ
gF

(
∆I
I

)2
=
(

∆gF
gF

)2
(36)

Applying our results for gF leads to:

I(87Rb) = 4.26± 1.83 I(85Rb) = 8.59± 3.12 (37)

As expected, the values are way off from the true values.

4. Conclusions
In this experiment, we were able to optically pump rubidium. We determined a relaxation time, which
however is not the relaxation time from optical pumping, as it is intensity independent.
We were further able to successfully measure earth’s magnetic field, albeit the uncertainty of our

determined values of roughly 70% is not satisfying.
We were also able to observe the hyperfine Zeeman splitting by applying a high frequency field. How-

ever, the determined g factors do not match with theory. Furthermore, there seems to be a systematic
problem, as our g factors are frequency-dependent, which they should not be. As the g factors do not
match, the calculated nuclear spins do not match with theory as well.

13



Sebastian Knust Optical pumping of rubidium 02/02/2012

A. References
[1] Brechling, Armin: Script Optisches Pumpen am Rubidium (FP I). Universität Bielefeld, Nov.

2011

[2] Ellarie: Wasserstoff Zeeman.svg. http://commons.wikimedia.org/w/index.php?title=File:
Wasserstoff_Zeeman.svg&oldid=34463141

[3] Haken, Hermann ; Wolf, Hans C.: The Physics of Atoms and Quanta. 7th Edition. Springer,
2005. – ISBN 978–3–540–20807–5

[4] Kapitel 2.6.6. Magnetic properties of materials. In:Kaye, George William C. ; Laby, Thomas H.:
Tables of physical and chemical constants and some mathematical functions. 16th Edition (1995).
Kaye & Laby Online Version 1.0 (http://www.kayelaby.npl.co.uk/), 2005

[5] Korte, Monika: IGRF-Deklinationsrechner. http://www-app1.gfz-potsdam.de/cgi-bin/igrf.
pl. Version: February 2010

[6] Recht, Johannes ; Kiein, Werner: Optical pumping of Rubidium. Madison, WI: Uni-
versity of Wisconsin, April 2005. http://www.hep.wisc.edu/~prepost/407/opticalpumping/
opticalpumping.pdf

B. Data
This protocol as well as the recorded data is available online at http://www.sknust.de/sci/2012/
protocols/rubidium/.
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